Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Yavuz Köysal, ${ }^{\text {a }}$ S Şamil Iș̦ı, ${ }^{\text {a }}$
Nesuhi Akdemir, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Cihan Kantar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.111$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(3,5-Dimethoxyphenoxy)phthalonitrile

The crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$, is composed of a 3,5-dimethoxyphenoxy group attached to a phthalonitrile group. The structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts, in additional to weak van der Waals interactions.

Comment

Monosubstituted phthalonitriles, such as 4-(3,5-dimethoxyphenoxy)phthalonitrile, (I), are generally used for the synthesis of symmetrically and unsymmetrically substituted phthalocyanines and subphthalocyanines (Leznoff \& Lever, 1989-1996). Phthalocyanines have continuously been the subject of research due to their wide-ranging applications, such as in organic pigments, chemical sensors, electrochromic display devices, photovoltaic cells, xerography, optical disks, catalysis and non-linear optics (McKeown, 1998).

(I)

Fig. 1 shows a perspective view of the molecule of (I), with the atom-numbering scheme. The triple-bond distance in the cyano groups is in good agreement with our previous reports (Köysal et al., 2003; Köysal et al., 2004; Ocak et al., 2003).

Atoms C9/C10/C11/C12/C13/C14 are coplanar, with a maximum deviation of 0.17 (14) \AA for atom C12; atoms O2 and O 3 are 0.0022 (12) and 0.0082 (10) \AA, respectively, from this plane. The dihedral angle between the C9-C14 and C1-C6 rings is $59.33(4)^{\circ}$.

The crystal structure has an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$ [symmetry code: (i) $x,-y-\frac{1}{2}$,

Figure 1
The structure of the title compound, (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 31 March 2004 Accepted 28 April 2004 Online 8 May 2004
$\left.\frac{1}{2}+z\right]$. In the crystal packing, the 3,5 -dimethoxyphenoxy groups are close to each other, with van der Waals interactions, and are stacked parallel to the c axis of the unit cell.

Experimental

3,5-Dimethoxyphenol ($1.08 \mathrm{~g}, 7 \mathrm{mmol}$) and 4-nitrophthalonitrile $(1.00 \mathrm{~g}, 5.78 \mathrm{mmol})$ were dissolved in dry DMF (40 ml) with stirring under N_{2}. Dry fine-powdered sodium carbonate ($1.0 \mathrm{~g}, 7.24 \mathrm{mmol}$) was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at room temperature and poured into iced water $(150 \mathrm{~g})$. The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield 1.20 g , 74.07%). Single crystals were obtained from absolute ethanol at room temperature via slow evaporation (m.p. 413 K). Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 68.57, H 4.32, N 10.00\%; found: C 68.46, H 4.40, N 9.90%. IR data $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 3056-3022 $\left(\mathrm{Ar}^{\left.-\mathrm{CH}_{2}\right), 2960-2856}\right.$ $\left(\mathrm{CH}_{2}\right), 2229(\mathrm{CN})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \\
& M_{r}=280.28 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=12.8923(12) \AA \\
& b=7.4816(5) \AA \\
& c=16.2916(18) \AA \\
& \beta=116.33(7) \AA \\
& V=1408.4(2) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.322 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

Cell parameters from 9537 reflections
$\theta=1.4-28.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.50 \times 0.34 \times 0.25 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer
ω scans
Absorption correction: none
17632 measured reflections
3632 independent reflections 2238 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.111$
$S=0.97$
3632 reflections
191 parameters
H -atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.060 \\
& \theta_{\max }=28.8^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-10 \rightarrow 9 \\
& l=-22 \rightarrow 21
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.062 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.021(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C7-N1	$1.1347(16)$	$\mathrm{C} 13-\mathrm{O} 3$	$1.3621(15)$
$\mathrm{C} 8-\mathrm{N} 2$	$1.1328(17)$	$\mathrm{C} 15-\mathrm{O} 2$	$1.4196(18)$
C $9-\mathrm{O} 1$	$1.3985(13)$	$\mathrm{C} 16-\mathrm{O} 3$	$1.4304(16)$
C11-O2	$1.3601(15)$		
C1-O1-C9	$121.84(9)$	$\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 16$	$116.67(10)$
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 15$	$117.62(11)$		
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 15$	$3.9(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 16$	$14.54(18)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 15$	$-175.83(13)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 16$	$-164.74(12)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{2}$	0.93	2.51	$3.2621(18)$	138

Symmetry code: (i) $x,-\frac{1}{2}-y, \frac{1}{2}+z$.

Figure 2
The crystal packing of the title compound. Dashed lines indicate hydrogen bonds.

H atoms were positioned geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distances at $0.93 \AA$ and the methyl $\mathrm{C}-\mathrm{H}$ distances at $0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ [$1.5 U_{\text {eq }}(\mathrm{C})$ for methyl atoms].

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Köysal, Y., Işık, Ş., Akdemir, N., Erbil, A. \& Kantar, C. (2004). Acta Cryst. E60, o285-o286.
Köysal, Y., Işık, Ş., Akdemir, N., Erbil, A. \& McKee, V. (2003). Acta Cryst. E59, o1423-o1424.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 \& 4. Weinheim/New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., Garcia-Granda, S. \& Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

